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Bumby proved that the only positive integer solutions to the quartic Diophantine
equation 3X4 − 2Y 2 = 1 are (X, Y ) = (1, 1), (3, 11). In this paper, we use Thue’s
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(X, Y ) = (1, 1), (2m + 1, 4m2 + 4m + 3).
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1. Introduction

Given a parametrized family of cubic models of elliptic curves Et over Q, it is a
notoriously difficult problem to find absolute bounds for the number of integral
points on Et (and, indeed, in many cases, it is unlikely such bounds even exist).
Perhaps somewhat surprisingly, the situation is often radically different for quartic
models. In a series of classical papers, Ljunggren (see e.g. [5] and the references
therein) derived various explicit, absolute bounds for the number of integral solu-
tions to quartic Diophantine equations. For example, he showed that, given positive
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integers a and b, the equation

aX2 − bY 4 = 1

has at most a single solution in positive integers X and Y . The case of the apparently
similar equation

aX4 − bY 2 = 1 (1.1)

is significantly more complicated (unless a is an integral square; see [1] and [4]).
In fact, for general a and b, there is no absolute upper bound for the number of
integral solutions to (1.1) available in the literature (unless one adds additional
hypotheses; see [5]). Computations and assorted heuristics (see, e.g. [1], [4], [8], and
[9]), however, suggest the following:

Conjecture 1.1. Let a and b be positive integers. Then Eq. (1.1) has at most two
solutions in positive integers X and Y .

This conjectural upper bound is best possible since, choosing

(a, b) = (m2 + m + 1, m2 + m), (1.2)

for m a positive integer, we find the solutions

(X, Y ) = (1, 1) and (X, Y ) = (2m + 1, 4m2 + 4m + 3) (1.3)

to Eq. (1.1). One might even hypothesize that, in a certain sense we will make
precise later, these pairs (a, b) (together with (a, b) = (2, 1)) are the only ones for
which (1.1) has more than a single such solution.

In [2], Bumby applied a clever argument involving arithmetic in the quartic
number field Q(

√−2,
√−3) to verify Conjecture 1.1 for (a, b) = (3, 2) (i.e. to show

that the known solutions (1.3) are the only ones, in the simplest case m = 1 of
(1.2)). Our goal in this paper is to deduce a like result for the entire family of pairs
(a, b) in (1.2), that is, to prove

Theorem 1.2. Let m be a positive integer. Then the only positive integral solutions
to the equation

(m2 + m + 1)X4 − (m2 + m)Y 2 = 1 (1.4)

are given by (X, Y ) = (1, 1) and (X, Y ) = (2m + 1, 4m2 + 4m + 3).

Our argument is fundamentally different from that employed by Bumby [2].
In fact, the techniques of [2] do not apparently generalize to arbitrary values of
m > 1. We will instead appeal to classical results of Thue [6] from the theory of
Diophantine approximation. In the context of quartic equations, these were first
utilized, independently, by Yuan [10] and by Chen and Voutier [3], to sharpen prior
work of Ljunggren on Eq. (1.1), in case b = 1. In essence, this paper may be viewed
as a companion piece to [7], where these techniques are applied in a somewhat more
general setting.
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2. Reduction to Thue Equations

As detailed in the introduction to [7], in order to bound the number of positive
integer solutions to an equation of the form aX4 − bY 2 = 1, it suffices to consider
the case when a = b + 1. That is, it is sufficient to determine an upper bound for
the number of integer solutions to Diophantine equations of the shape

(t + 1)X4 − tY 2 = 1. (2.1)

In this context, a more precise version of Conjecture 1.1 is the following:

Conjecture 2.1. If t > 1 is integral, then the only positive integer solution to
Eq. (2.1) is given by (X, Y ) = (1, 1), unless t = m2 + m for some positive integer
m, in which case there is also the solution (X, Y ) = (2m + 1, 4m2 + 4m + 3).

Our strategy in proving Theorem 1.2 will be as follows. We begin by recalling
[7, Proposition 2.1], in which it was shown a positive integer solution of Eq. (2.1)
gives rise to a solution to a Thue equation.

Proposition 2.2. Let t be a positive integer. If there exists a solution to (2.1) in
positive integers (X, Y ) �= (1, 1), then there exists an integer solution (x, y) to the
equation

x4 + 4tx3y − 6tx2y2 − 4t2xy3 + t2y4 = t20, (2.2)

where t0 divides t, t0 ≤ √
t and min{|x|, |y|} > 1.

It follows, for such a solution, that x/y is “close” to one of the roots of the
quartic polynomial

pt(x) = x4 + 4tx3 − 6tx2 − 4t2x + t2, (2.3)

which we label β(i), i = 1, 2, 3, 4. For the special cases when t = m2 + m with m

integral, we will be able to apply the hypergeometric method to obtain (nontrivial)
effective measures of approximation for these roots, showing (eventually) that no
such rational number x/y can exist.

In order to utilize the hypergeometric method, one requires good rational ap-
proximations to the roots β(i), i = 1, 2, 3, 4 of the polynomial (2.3). These roots are
given explicitly by

β(1) =
√

t

τ
(1 + ρ), β(2) =

√
t

τ
(1 − ρ), β(3) = (−τ + ρ)

√
t, β(4) = −(τ + ρ)

√
t,

where

τ =
√

t + 1 +
√

t and ρ =
√

τ2 + 1.
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We will, here and henceforth, assume that t = m2 +m, for m a positive integer.
We may readily derive, via the Mean Value Theorem, the following inequalities for
the roots β(i):

m + 1 +
1

8m2
+

1
16m3

< β(1) < m + 1 +
1

8m2
+

1
8m3

,

−m − 1
8m2

+
1

16m3
< β(2) < −m − 1

8m2
+

1
8m3

,

1
4
− 5

64m2
+

1
16m3

< β(3) <
1
4
− 5

64m2
+

5
64m3

,

(2.4)

and

−4m2 − 4m− 5
4

+
21

64m2
− 21

64m3
< β(4) < −4m2 − 4m − 5

4
+

21
64m2

− 5
16m3

.

We will, in fact, apply the hypergeometric method of Thue and Siegel to obtain
an effective measure of approximation to just the root β(1). Later, we will indicate
why this is sufficient for our purposes.

3. Towards an Effective Measure of Approximation

Let us begin by recalling some notation. For a positive integer r, we put

Xr(X) = 2F1(−r,−r − 1/4; 3/4; X),

where 2F1 denotes the classical hypergeometric function, and use X∗
r to denote the

homogeneous polynomials derived from these polynomials, so that

X∗
r (X, Y ) = Y rXr(X/Y ). (3.1)

A basic principle underlying the hypergeometric method and, indeed, a funda-
mental technique for proving irrationality in general, is the following folklore lemma
(the formulation we provide here is Lemma 2.8 of [3]):

Lemma 3.1. Let θ ∈ R. Suppose that there exist k0, l0 > 0 and E, Q > 1 such
that for all r ∈ N, there are rational integers pr and qr with |qr| < k0Q

r and
|qrθ−pr| ≤ l0E

−r satisfying prqr+1 �= pr+1qr. Then for any rational integers p and
q with |q| ≥ 1/(2l0), we have∣∣∣∣θ − p

q

∣∣∣∣ >
1

c|q|κ+1
, where c = 2k0Q(2l0E)κ and κ =

log Q

log E
.

This result says, in essense, that the existence of a dense set of suitably good
rational approximations to a real number θ provides us with an explicit lower bound
for rational approximation to θ. For our purposes, we will seek to apply this with
θ = β(1) (whereby, we need to improve upon the trivial lower bound given by
Liouville’s Theorem). The hypergeometric method is predicated on the idea of
constructing the desired dense set of rational approximations through specializing
rational functions (derived from the classical hypergeometric functions) at rational
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(or perhaps algebraic) values. We will generate these rational functions by appeal-
ing to the following special case of a result from [7] (cf. [3, Lemma 2.1]), which is
essentially just a convenient formulation of the original work of Thue [6]. Note, in
the notation of [3], we are taking n = 4,

U(x) = (x − α1)(x − α2), P (x) = c1(x − α1)4 − c2(x − α2)4

and that the signs of b(x) and d(x) are reversed in comparison to [3].

Lemma 3.2. Let α1, α2, c1 and c2 be complex numbers with α1 �= α2 and define
the following polynomials

a(x) =
5
2
(α1 − α2)(x − α2), c(x) =

5
2

α1(α1 − α2)(x − α2),

b(x) =
5
2
(α2 − α1)(x − α1), d(x) =

5
2

α2(α2 − α1)(x − α1),

u = u(x) = −c2(x − α2)4 and z = z(x) = c1(x − α1)4.

Putting
√

λ = (α1 − α2)/2, we write, for a positive integer r,

(
√

λ)rAr(x) = a(x)X∗
r (z, u) + b(x)X∗

r (u, z)

and

(
√

λ)rBr(x) = c(x)X∗
r (z, u) + d(x)X∗

r (u, z).

Then, for any root β of P (x) = z(x) − u(x), the polynomial

Cr(x) = βAr(x) − Br(x)

is divisible by (x − β)2r+1.

We will apply this by choosing α1, α2, c1 and c2 so that P (x) = pt(x) and
β = β(1). Since β(1) is extremely close to m + 1, it follows that

Br(m + 1)/Ar(m + 1)

corresponds to a good rational approximation to β(1). In order to use Lemma 3.1,
we need to bound |Ar(m + 1)|, |Br(m + 1)| and |Cr(m + 1)|. We will do this via
special cases of [3, Lemmas 2.5 and 2.6], and [7, Lemma 3.4] (the last to treat
non-archimedean valuations):

Lemma 3.3. With the above notation, put w(x) = z(x)/u(x) and write w(x) =
µeiϕ with µ ≥ 0 and −π < ϕ ≤ π. Put w(x)1/4 = µ1/4eiϕ/4.

(i) For any non-zero x ∈ C such that w = w(x) is not a negative real number or zero,

(
√

λ)rCr(x) = {β(a(x)w(x)1/4 + b(x)) − (c(x)w(x)1/4 + d(x))}X∗
r (u, z)

− (βa(x) − c(x))u(x)rRr(w),

with

Rr(w) =
Γ(r + 5/4)
r! Γ(1/4)

∫ w

1

((1 − t)(t − w))rt−r−3/4 dt,

where the integration path is the straight line from 1 to w.
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(ii) Let w = eiϕ, 0 < ϕ < π and put
√

w = eiϕ/2. Then

|Rr(w)| ≤ 4 Γ(r + 5/4)
r! Γ(1/4)

ϕ|1 −√
w|2r.

Lemma 3.4. Let u, w and z be as above. Then

|X∗
r (u, z)| ≤ 4 |u|r Γ(3/4)r!

Γ(r + 3/4)
|1 +

√
w|2r−2.

Lemma 3.5. Let Nr be the greatest common divisor of the numerators of the coef-
ficients of Xr(1− 2x) and let Dr be the least common multiple of the denominators
of the coefficients of Xr(x). Then the polynomial (Dr/Nr)Xr(1 − 2x) has integral
coefficients. Moreover, Nr = 2r,

Dr
Γ(3/4)r!

Γ(r + 3/4)
< 0.8397 · 5.342r and Dr

Γ(r + 5/4)
Γ(1/4)r!

< 0.1924 · 5.342r.

Finally, in order to guarantee that the rational approximations we produce are
essentially distinct, we will have need of [3, Lemma 2.7]:

Lemma 3.6. Let α1, α2, Ar(X), Br(X) and P (X) be defined as in Lemma 3.1 and
let a, b, c and d be complex numbers satisfying ad − bc �= 0. Define

Kr(X) = aAr(X) + bBr(X) and Lr(X) = cAr(X) + dBr(X).

If (x − α1)(x − α2)P (x) �= 0, then

Kr+1(x)Lr(x) �= Kr(x)Lr+1(x),

for all r ≥ 0.

We now determine the quantities defined in Lemma 3.2. Choose

α1 =
√−t, α2 = −√−t, c1 = (1 +

√−t)/2, c2 = (1 −√−t)/2,

whereby λ = −t and P (x) = pt(x), as in (2.3). We will now show how our various
lemmas may be employed to obtain an effective measure of approximation to β(1).
Let us select x = m + 1 and define

η = 1 + i
√

m2 + m(4m2 + 4m + 3).

It follows that

w = w(m + 1) =
−1 + i(4m2 + 4m + 3)

√
m2 + m

1 + i(4m2 + 4m + 3)
√

m2 + m
= −η

η
,

and so

w1/4 =
1 + iτ

ρ
· m + 1 − i

√
m2 + m

m + 1 + i
√

m2 + m
. (3.2)

Using the fact that ρ2 = τ2 + 1, one may check that

a(m + 1) = −5(m + 1)[m − i
√

m2 + m] = b(m + 1)
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and

c(m + 1) = −5m(m + 1)[m + 1 + i
√

m2 + m] = d(m + 1),

whereby

β(1) =
c(m + 1)w1/4 + d(m + 1)
a(m + 1)w1/4 + b(m + 1)

,

and hence the first term in the expression for (−t)r/2Cr(m + 1) in Lemma 3.3
vanishes. By Lemmas 3.2 and 3.3, we thus have that

(−t)r/2Ar(m + 1) = a(m + 1)X∗
r (z(m + 1), u(m + 1))

+ b(m + 1)X∗
r (u(m + 1), z(m + 1)),

(−t)r/2Br(m + 1) = c(m + 1)X∗
r (z(m + 1), u(m + 1))

+ d(m + 1)X∗
r (u(m + 1), z(m + 1)),

(−t)r/2Cr(m + 1) = −(β(1)a(m + 1) − c(m + 1))[u(m + 1)]rRr(w).

(3.3)

These quantities form the basis for our sequence of rational approximations to
β(1). We first eliminate some common factors. One can check that

u(m + 1) = −1
2
(m + 1)2η = −z(m + 1), (3.4)

z(m + 1)
u(m + 1)

= 1 − 2
η

and
u(m + 1)
z(m + 1)

= 1 − 2
η
. (3.5)

Using (3.1), (3.4), and (3.5), we obtain

X∗
r (z(m + 1), u(m + 1)) = (−1)r 1

2r
(m + 1)2r ηr Xr

(
1 − 2

η

)

and

X∗
r (u(m + 1), z(m + 1)) =

1
2r

(m + 1)2r ηr Xr

(
1 − 2

η

)
.

After some routine manipulations, we find, from (3.3) and Lemma 3.5, considering
the cases of r even or odd separately, that the quantities

Pr =
m[(r−2)/2]DrBr(m + 1)

10(m + 1)[3r/2+1]
and Qr =

m[(r−2)/2]DrAr(m + 1)
10(m + 1)[3r/2+1]

(3.6)

are rational integers. Note that we have

Qrβ
(1) − Pr = Sr, (3.7)

where

Sr =
m[(r−2)/2]DrCr(m + 1)

10(m + 1)[3r/2+1]
. (3.8)
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The integers defined by (3.6) are those whose quotients will provide us with our
rational approximations to β(1). We want to show that these are “good” approxi-
mations; to do this, we will estimate |Qr| and |Sr| from above. From (3.2), we may
write

w1/4 =
1

(2m + 1)ρ
[(1 + 2τ

√
t) + i(τ − 2

√
t)],

whereby

w1/2 =
1

(2m + 1)2ρ2
[(1 + 2τ

√
t)2 − (τ − 2

√
t)2 + 2i(1 + 2τ

√
t)(τ − 2

√
t)].

It is easy to verify via calculus that

1.999 < |1 +
√

w| < 2, for m ≥ 2, (3.9)

and similarly that

|u(m + 1)(1 +
√

w)2| < 23.266 m5, (3.10)

at least provided m ≥ 3. From the expressions for a(m + 1), b(m + 1), c(m + 1) and
d(m + 1), one can see that

|a(m + 1)| = |b(m + 1)| = 5(m + 1)
√

m(2m + 1) (3.11)

and

|c(m + 1)| = |d(m + 1)| = 5m(m + 1)
√

(m + 1)(2m + 1). (3.12)

By (3.3), (3.11), the fact that |z| = |u| (from 3.4), and Lemma 3.4, we have that

tr/2|Ar(m + 1)| ≤ 8
Γ(3/4)r!

Γ(r + 3/4)
|a(m + 1)| |u(m + 1)|r |1 +

√
w|2r−2

whereby, from (3.9), (3.10), and (3.11),

tr/2|Ar(m + 1)| ≤ 10.011
Γ(3/4)r!

Γ(r + 3/4)
(m + 1)

√
m(2m + 1)(23.266 m5)r.

Now we use (3.6) and Lemma 3.5 to obtain

|Qr| <
0.841

m

√
m(2m + 1)(124.287 m3)r < 1.285(124.287 m3)r, (3.13)

for m ≥ 3.
Next, we look to bound |Sr|. By (3.3),

tr/2|Cr(m + 1)| = |β(1)a(m + 1) − c(m + 1)| |u(m + 1)|r |Rr(w(m + 1))|
and so, from Lemma 3.3 and the fact that c(m +1)/a(m + 1) = i

√
t, it follows that

tr/2|Cr(m + 1)| < |a(m + 1)||β(1) − i
√

t| 4 Γ(r + 5/4)
r! Γ(1/4)

ϕ |u(m + 1)(1 −√
w)2|r,
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with ϕ as defined in Lemma 3.3. Since

sin ϕ = Im w =
2
√

m2 + m(4m2 + 4m + 3)
1 + (m2 + m)(4m2 + 4m + 3)2

,

we have that ϕ < 1/(2m3). Therefore, from the bounds for β(1) in (2.4),

ϕ|β(1) − i
√

m2 + m| <
0.885
m2

,

for m ≥ 3. As above, a routine application of calculus yields

|u(m + 1)(1 −
√

w(m + 1))2| ≤ 0.136
m

,

again, for m ≥ 3. From these results, (3.8) and Lemma 3.5, one can see that

|Sr| ≤ 0.394
m2

(1.376 m3)−r. (3.14)

We are now in position to derive our desired lower bound for rational approximation
to β(1):

Theorem 3.7. Suppose that m ≥ 3. Define

κ =
log(124.287 m3)
log(1.376 m3)

.

If p and q are positive integers, then∣∣∣∣β(1) − p

q

∣∣∣∣ >
1

319.42 m3(1.09 m)κq1+κ
.

Proof. We apply Lemma 3.1. First, notice that PrQr+1 − Pr+1Qr is a non-zero
multiple of

Ar+1(m + 1)Br(m + 1) − Ar(m + 1)Br+1(m + 1).

From Lemma 3.6, with a = d = 1, b = c = 0 and x = m + 1, it follows that
PrQr+1 �= Pr+1Qr, and thus, using (3.7), we may invoke Lemma 3.1, with pr = Pr

and qr = Qr. For m ≥ 3, from (3.13) and (3.14), we can take k0 = 1.285, l0 =
0.394 m−2, E = 1.376 m3 and Q = 124.287 m3. Lemma 3.1 thus yields the desired
result.

4. Proof of Theorem 1.2

To prove Theorem 1.2, let us begin by defining, for non-negative integers k, a
sequence of polynomials {V2k+1(t)} via the relation

(
√

t + 1 +
√

t)2k+1 = V2k+1(t)
√

t + 1 + W2k+1(t)
√

t.

For future use, we will also define

(
√

t + 1 +
√

t)2k = Tk(t) + Uk(t)
√

t(t + 1).
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Given an integer t ≥ 1, a positive integer solution (X, Y ) to the quartic Diophantine
equation (2.1) is equivalent, by the classical theory of Pell equations, to an index
k ≥ 0 for which X2 = V2k+1(t). In [7], the authors showed that for all k ≥ 1, the
equation X2 = V4k+1(t) has no solutions in positive integers X and t. It remains,
therefore, to derive an analogous result for the equation X2 = V4k+3(t). As noted
in [7], a solution to this latter equation corresponds to a rational x/y for which the
closest root of the polynomial pt is either β(1) or β(2). Let us now estimate how
close such a rational number must be in order that (x, y) is a solution of (2.2).

We begin by proving a lower bound for |y| in terms of m, through what
is essentially an application of Runge’s method. For 1 ≤ k ≤ 24, we com-
pute the Puiseux expansions at infinity of the algebraic function z(m) defined by
z2 = V4k+3(m2 + m) and find, for each k, a positive integer rk and integer polyno-
mials f4k+3(m), g4k+3(m) with the property that

22rkV4k+3(m2 + m) = (f4k+3(m))2 + g4k+3(m),

with 2 deg f4k+3(m) = deg V4k+3(m2 + m) = 4k + 2, and deg g4k+3(m) = 2k. We
verify that each of the polynomials g4k+3(m) has no positive integer roots. We
then notice that |f4k+3(m)| > |g4k+3(m)| for m > 0, a much stronger condition
than required. We remark that, if one could prove that this property holds for all
k ≥ 1, this would yield a completely different proof of Theorem 1.2. In any case, it
follows from the above properties that each of the equations z2 = V4k+3(m2 + m),
(1 ≤ k ≤ 24), has no solutions in positive integers (z, m).

To finish deriving our lower bound for |y|, we begin by noting that a short
calculation yields the inequalities

0.9 τk−1 < Vk ≤ τk−1, (4.1)

valid for m ≥ 3 and k ≥ 3. We will mimic the proof of [7, Proposition 2.1]. Let us
begin by noting the relation

V4k+3 = V 2
2k+1 + V 2

2k+2 = (Tk + tUk)2 + tU2
k+1,

valid for all k ≥ 0. From the supposition that

X2 = V4k+3,

we thus have

tU2
k+1 = X2 − (Tk + tUk)2

and hence, from the coprimality of Uk and Tk + tUk and the parity of Uk, we deduce
the existence of positive integers G, H, t1 and t2 with Uk+1 = 2GH , t = t1t2, and

X − (Tk + tUk) = 2t1G
2, X + (Tk + tUk) = 2t2H

2.

Substituting for Tk and Uk in the equation T 2
k − t(t + 1)U2

k = 1 and setting t0 =
min{t1, t2} and either (x, y) = (t1G, H) or (−t2H, G) leads us to Eq. (2.2).



June 19, 2006 18:42 WSPC/INSTRUCTION FILE 00047

A Generalization of a Theorem of Bumby 205

We will suppose that |y| = G, as the case |y| = H may be treated in a similar
fashion, and actually leads to a larger lower bound for |y|. It is easy to see that

√
V4k+3 − V2k+1 =

V2k+2√
(V2k+1/V2k+2)2 + 1 + (V2k+1/V2k+2)

,

and so, from (4.1), we deduce the inequalities

2t1y
2 >

1
4

τ2k+1 > 22k−1(
√

t)2k+1.

Since t1 ≤ t, m <
√

t and k ≥ 25, we thus have that

|y| > 224 m24. (4.2)

We now estimate how close x/y must be to one of β(1) or β(2). From (4.2), we
can evidently assume that |y| ≥ 4. Let us suppose first that (x, y) is a solution of
Eq. (2.2) with β(1) closest to x/y. In this case, we may assume that |x−β(1)y| ≤ t1/4,
otherwise y4|pt(x/y)| > t. Thus x/y is greater than β(1) − t1/4/4, whence∣∣∣∣β(2) − x

y

∣∣∣∣ > β(1) − β(2) − 1
4
m1/2 > 2m− 1

4
m1/2 + 1 − 1

4
m−1/2,

by the third and fourth inequalities in (2.4). Similarly, we have that∣∣∣∣β(3) − x

y

∣∣∣∣ > m− 1
4
m1/2+

3
4

+
9

64m2
,

∣∣∣∣β(4) − x

y

∣∣∣∣ > 4m2+5m− 1
4
m1/2+

9
4

+
13

64m2
,

and, upon combining the above and assuming that m ≥ 3,
∏
i�=1

∣∣∣∣β(i) − x

y

∣∣∣∣ > 7.8 m4.

Therefore, if |pt(x, y)| = t20 ≤ t, with t = m2 + m and m ≥ 3, then∣∣∣∣β(1) − x

y

∣∣∣∣ <
1

5.85 m2 y4
. (4.3)

Conversely, if the closest root to x/y is β(2), then, arguing in a similar fashion, we
have ∣∣∣∣β(2) − x

y

∣∣∣∣ <
1

5.85 m2 y4
.

Since β(1)β(2) = −t, a short calculation shows that∣∣∣∣β(1) −
(−ty

x

)∣∣∣∣ <
m2

5.8 x4
. (4.4)

It follows, in either case (4.3) or (4.4), that there exist positive integers p and q,
such that ∣∣∣∣β(1) − p

q

∣∣∣∣ <
m2

5.8 q4
.
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Combining this with Theorem 3.7, we thus have that

q3−κ <
319.42 m5

5.8
(1.09 m)κ, (4.5)

provided that m ≥ 3. Combining (4.5) with the lower bound for |y| in (4.2) con-
tradicts our choice of m ≥ 3. For m = 1, we may appeal to [2], while, for m = 2,
we may apply the computer package KANT (ThueSolve, to be precise) to the Thue
equations

x4 + 24x3y − 36x2y2 − 144xy3 + 36y4 ∈ {1, 4}.
The only solutions we encounter are with (x, y) = ±(2,−1),±(1, 0). This, with
Proposition 2.2, completes the proof of Theorem 1.2.
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